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Abstract. The Gauss link integral measures simple linking between two curves. Helicity 
integrals, which are related to the Hopf invariant, similarly measure the net linking of a 
set of field lines (for example vortex lines or magnetic lines of force). However, these 
quadratic integrals do not always detect links involcing three or more curves. We present 
an invariant cubic integral which can indeed detect linkage when the quadratic integrals 
vanish: for example the integral distinguishes the Borromean rings from three unlinked 
rings. This integral is based on an algebraic topology construct, the Massey triple product. 

1. Introduction and definitions 

Results from the pure mathematical literature can be made accessible to physicists and 
applied mathematicians by translating them into common physical language. This 
paper discusses an object from algebraic topology, the Massey triple product (Massey 
1958, 1968, Fenn 1983), and reformulates it in terms of vector fields and the familiar 
operations of div, grad, and curl. The triple product (a mapping between cohomology 
classes) leads to a topological invariant which measures the third order linking of a 
set of closed curves. For example, it can distinguish the Borromean rings from three 
unlinked rings (see figure 1). We will derive an integral form for this invariant, and 
give an intuitive description of how it works. 

The need for third- or higher-order integral invariants has been discussed by 
Edwards (1968) (see also Moffatt 1981). Edwards was searching for topological 
constraints on the statistical mechanics of polymer entanglements. He derived an 
expression which seemed to distinguish the Borromean rings from unlinked rings. 
Unfortunately, the derivation involved integrating an ill-defined function, and hence 
did not yield a sensible result (see end of section 3 below). 

Figure 1 .  The Borromean rings. The curves C, are enclosed inside small tubes U,. 
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Consider three closed curves C,, i = 1,2,3 (see figure 1). We have put arrows on 
the curves to give them a direction. The curves are surrounded by toroidal volumes 
U,. We will assume that these volumes are thin so that they do not intersect each 
other. The boundary surfaces will be called a U,. Finally, let U '  denote space external 
to the three tori ( U ' =  9'- U ,  U U 2 u  U>).  

We suppose that the volumes contain magnetic (i.e. divergence-free) fields B ,  , B 2 ,  
B 3 .  The fields point in the same direction as the axial curves C,, and do not cross the 
boundaries: B, 0 n * Idu ,  = 0. Each field has a net flux in the axial direction 0,. Also, the 
magnetic fields have vector potentials A , ,  where V x A ,  = B,.  

2. Second-order linking 

First consider the situation where some of the curves link each other in pairs. Thus 
in figure 2 Cz links both C, and Cj, but C, and C, are unlinked. This pair-wise linking 
can be detected by computing the Gauss integrals 

r! - rJ y,, = f dr,  x dr, - 
4T Ir, - ',I3 

or the helicity integrals 

R,, = A, * B, d3x,. 

One can readily show (Moreau 1961, Moffat 1969) that 
I,, 

at,, = %/, = %,@,0/ i # j .  (3) 
For i = j  the Gauss integral is not invariant to deformations of the curve C,. On 

the other hand X,, is indeed invariant; it measures the twisting of magnetic field lines 
within U, about the axis C,, plus the coiling of the axis itself (Fuller 1978, Berger and 
Field 1984). 

C, 4 4 
Figure 2. Three curves with Y,] = 2, $F13 =0, and YZ3 = -1. 

Next consider the Borromean rings in figure 1. For these rings all the Gauss 
integrals vanish. The numbers LZ,, (or at,,) do not distinguish the Borromean rings 
from three unlinked rings. In the following sections, however, we will present third- 
order analogues of TV and Xu which do make this distinction. 

3. The Massey fields 

We consider configurations where all the second-order linking numbers vanish, i.e. 

z,, = at,, = 0 i#j. (4) 
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First we construct some new vector fields out of combinations of the vector potentials 
A, .  For the moment, we restrict ourselves to the region U '  outside of the three tubes 
U,. Let 

Gi(x)  = A , ( x )  X A , ( x )  

G?(x) = A , ( x )  X A i ( x )  for x E U' .  ( 5 )  

G,(x) = A i ( x )  X A , ( x )  

These fields are divergence free in U ' :  for example 

V * GI = B' A , - B ,  * A z = O  

because the fields B, d o  not enter U ' .  The extension of these fields to all space will 
be discussed below. The linking number A, in essence, will measure the linking of 
the field lines of G, with the field lines of B,. 

Two more sets of vector fields are needed. Let F, be a vector potential for G,,  

V x F, = G, .  ( 6 )  

Finally, define the Massey fields 

Mi = AT x F3 - A2 x Fz 

M , =  A1 x Fl -A3  x F? (7)  
M ? =  A, X FZ - A ,  x FI. 

The Massey triple product is (in the context of three-dimensional vector fields) the set 
of all possible Massey fields modulo gauge transformations of A, and F, . )  Two 
immediate properties of the Massey fields are 

Mi + M2 + M? = 0 (8)  
and 

V * M i ( x )  = 0 for X E  U '  (9) 

(For example, V M ,  = A? - G2 - A, * G, = 0.) 
In order to evaluate F, ,  we need to know what G, looks like inside the tubes U , ,  

U,  and U,. The vector potential F, will exist only if G - C,  = 0 everywhere. Thus we 
need to find a divergence-free extension of G, inside the tubes. This extension exists 
only when the Gauss linkages (and helicities) between pairs of tubes vanish. No matter 
how we extend GI into tube 2 ,  for example, the flux of GI out of the boundary of 
tube 2 is 

G I  * n* d'x = A 2 x A 3  n* d2x J i L z  

= I,? C 
r 

A2 x A, d3x  

= J A 3 *  B2d3x. 
U:  

By equation (2) ,  then, 
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One more result will be needed before defining G, inside the tubes. Note that 
outside of U? (for example), the magnetic field B3 vanishes and  so C x A, = 0. Thus 
in certain subregions of space A 3  will be expressible as a gradient. In particular, the 
flux of B, through any closed curve drawn inside U? vanishes. We can then write 
A, = V # J , > , ~  inside U 2 .  The subscript ( 2 )  has been added to remind us that this scalar 
field is, strictly speaking, only defined within U 2 ;  i t  is dangerous to extend it elsewhere. 
We may define similar scalar functions such as AI = 4ci,r in U 3 ,  etc. Getting back to 
the extensions of G , ,  let 

A2XA3 X E  U ,  and U '  
G I ( x ) =  A z x  A3-412riB2 X E  uz ( 1 1 )  i A ? X A 3 + 4 i i ? B ?  X E  U,. 

The field G I  is now divergence-free everywhere. The extensions of G2 and G ,  can be 
found by permuting the indices. 

( In  Edwards (1968) an attempt was made to find a third-order link integral. Using 
our notation, the method involved letting A ,  = V4, for a potential 4 ,  defined in a 
certain region outside of U,. However, 41 was then identified with the potential qb,3), 
defined inside U, (equations A l l ,  A12). Unfortunately U1 links the combined region 
where 4l and I # J ( ~ , ,  were used. This means that there are closed paths where the line 
integral of A ,  is non-zero, invalidating the assignment A ,  = '74, .I 

4. Third-order linking numbers 

We can now define the third-order linking number A. Consider the surface integrals 
of the Massey fields at the boundaries of the tubes: 

m,, = I;, , M ,  n̂  d'x 

and define 

,.M = (@,@2@,)-1m,2.  (13) 

The quantities m,, and A have the following properties: 
ii? 

m,, = O  if i = j .  (14) 

( i i )  

m 1 2 = m 2 , = m , ,  = - m , , = - m , , = - m , , .  (15 )  

( i i i )  

( i v )  The number .f? is invariant to the gauge transformations A, + A ,  + V p ,  and 

(v) Furthermore ,U is invariant to arbitrary motions of the volumes U,.  
F , + F , + V $ , .  
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Proofof (i). We will prove that m , ,  = 0. In U , ,  express A 2  and A ,  as gradients. The 
Massey field MI becomes 

Integrate by parts on aU,  to obtain 
MI = v 4, I 13 x F3 - v 4, I 12 x F2 . (17) 

m,, = lc,L, (d(I),G-dJ,,)lG) n* d2x 

= L =I ~ ~ 4 l l , 2 d J l l 1 3 ) ~ ~ l  * n*d2x 

= -ILl 4(ll24cl,3Bl n* d2x. 

( ~ , I , ~ Q $ ~ I J ~ X A I - ~ ( I ) , A I  X ~ ~ I I ) , )  * n* d2x 

II L', 

However Bl n* = 0 since B,  stays inside U , .  Thus m, ,  = 0. 

Proofof (i i) .  By equation (8) ,  m , , + m I 2 + m , , = 0 .  Thus 

m,,  = -m13. 

Let us now show also that 
m23 = -m,,. 

Consider a large sphere S enclosing all three tubes U,. By equation (9) the divergence 
of M3 vanishes in the region between S and the boundaries dU,. The divergence 
theorem then tells us that 

r 

m , + m23 + m3, = M3 - n* d2x. J, 
We can now apply the same reasoning as in the proof of (i), by writing A, = V $ ( S ) r ,  i = 
1 , 2 , 3 ,  to show that js M3 - n* d'x = 0. As m3, = 0 this proves equation (19). The other 
equalities in (ii) can be proved using m2, + m,,+ 11123 = 0, etc. 

Proof of ( i i i ) .  Inside U , ,  
Q * M 2 =  B ,  * F, - A ,  * G , + A ,  * G ,  

= B ,  * F, - A ,  

= B I  ' ( F I - ~ , I J z A ~ ) .  
(A2 X A,) + A3 * ( A ,  X Az-4rI)2BI) 

Proofof (iv). First consider the gauge transformation F, .+ F, +V $, . Gauge transforma- 
tions involving F2 and F3 can be dealt with by permutation of the indices. The change 
in m,,  is 

6 m I z =  la,, ( A ,  xV$, )  * n* d'x 

= /a,l ( $ , B , ) .  n* d'x 

after an integration by parts. But B, * n̂  vanishes at aU,  so Sm,, =O. 
Next let A ,  + A ,  + V p , .  Equation (16) for m,,  only involves A ,  through its curl, 

B , .  Since SB, = 0 for this gauge transformation, Sm,,  = 0 as well. Finally, the fluxes 
a,, a,, and @, are invariant to gauge transformations (as well as motions of the tubes). 
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Proof of (v) .  It suffices to consider the motion of only one tube, say U,. Arbitrary 
motions or  deformations of the three tubes can be built up  from such single motions. 
The movement of U, can be generated by a velocity field V ;  the change in B is 

aB,/ar = V x ( V  x B 3 ) .  (21) 

By (iv) ,  we can choose the gauge of A3 so that 

aA,/ar = ( v  x B3) .  

This vanishes away from U,. Thus by equation (16) am,,/ar = 0. 

5. Calculating the third-order linking number 

First we show that .U = 0 for three unlinked rings, and  then show that .il = *l for the 
Borromean rings. If a collection of rings is unlinked, that means each ring can be 
enclosed in its simply connected volume. Thus, for example, we can draw a simply 
connected surface S’ where U ,  is completely inside S’, but U, and UT are completely 
outside. The calculation of A proceeds as in the proofs of (i)  and ( i i ) .  By analogy 
with equation (20) we write 

m , , = l  M2-n*d2xx .  ( 2 3 )  

The right-hand side can be shown to vanish by expressing the vector potentials A, as 
gradients on S’. Thus A = 0 for unlinked rings. 

Let us consider the Borromean rings in a particularly simple geometry (see figure 
3). Ring 1 (i.e. curve C,) forms an  ellipse in the y - z  plane and bounds an area S, 
within that plane. Similarly, C, and C, lie in the z - x and x - y  planes, respectively. 
The unit normals to S I ,  S 2 ,  and S3 are 2, 9, and 2 Curve C, pierces S ,  at two points, 
but does not touch S3.  Similarly C, pierces S, and C,  pierces S I .  

s 

Figure 3. Geometry used for calculating .It.  

Calculation will be simplified by choosing some rather special gauges for A , .  
Outside of the thin tubes U,,  let A ,  be non-zero only for points on S,. For these points 

A ,  = @ , 6 ( x ) i  

A2 = W ( Y ) ?  (24) 
A, = @,6(z); .  

(For a closed curve linking tube i, A;dl= a, as required.) 

m , ,  = I B ,  . F ,  d3x. 

Now let us calculate m , > ,  using equation (16).  Since A3 = 0 inside U , ,  

L’ 1 
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Figure 4. The vector field C ,  links B, in a right-handed sense 

The vector field G ,  (see equation (1 1) and figure 4) is non-zero only on the line segment 
where S2 intersects S3,  and inside U:. Inside U, the scalar 4,2)3 = Q3 for points above 
z = 0, and 4(213 = 0 for points below z = 0. Thus Cl = -Q3Bz in the upper half of U,, 
and has net flux Q2Q3. 

From the figure, the field lines of G ,  link those of B1 in a right-handed sense, so 
the integral of F, along a field line of B ,  gives the value +Q2Q3. Thus m,? = Q,Q2Q3 
and by equation (13)  

A = 1. ( 2 6 )  
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